
1

CS-200
Computer Architecture

—
Part 6. Hardware Security

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Why Hardware Security?

• Software complexity
– OSes and hypervisors are too complex to be trusted to be bug free
– Who can trust OSes and hypervisors?! Secure processor architectures

• Microarchitectural side-channel attacks
– Sharing with other users gives them the ability to discover our secrets

• Shared caches, shared processors (branch predictors, pipelines, etc.)  CS-200!

• Physical monitoring attacks and physical side-channel attacks
– Users cannot physically protect their computing hardware

• Hardware is often in the cloud
• Hardware is embedded and remote (Internet-of-Things, IoT)

3

Outline of This Lecture

1. Basic Definitions
2. Attacks on Memory to Compromise Integrity (Rowhammer)
3. Covert Channels and Side-Channel Attacks
4. Attacks on Timing to Break Isolation and Confidentiality (Timing Side-

Channel Attacks)
5. Attacks on Memory to Break Isolation and Confidentiality (Cache Side-

Channel Attacks)
6. Combined Attacks to Break Isolation and Confidentiality (Meltdown)
7. Combined Attacks to Break Isolation and Confidentiality (Spectre)

4

1
Basic Definitions

5

Threat Model

Specification of the threats that a system is protected against
• Trusted Computing Base: what is the set of trusted hardware

and software components
• Security properties: what the trusted computing base is

supposed to guarantee
• Attacker assumptions: what a potential attacker is assumed

capable of
• Potential vulnerabilities: what an attacker might be able to gain

6

Classic Security Properties

• Confidentiality
 prevent the disclosure of secret information

• Integrity:
 prevent the modification of protected information

• Availability
 guarantee the availability of services and systems

We will also speak of isolation, that is the possibility to prevent any interaction between
users and processes, often used to guarantee confidentiality and integrity

7

2
Attacks on Memory to Compromise Integrity

(Rowhammer)

8

Dynamic Random-Access Memory

• DRAMs are the densest (and thus cheapest) form of
random-access semiconductor memory

• DRAMs store information as charge in small capacitors
part of the memory cell

• First patented in 1968 by Robert Dennard, scaled
amazingly over decades and was somehow an
important ingredient of the progress of computing
systems

• Charge leaks off the capacitor due to parasitic
resistances  every DRAM cell needs a periodic
refresh (e.g., every ~60 ms) lest it forgets information ©

 W
ik

ip
ed

ia
, D

yn
am

ic
 ra

nd
om

-a
cc

es
s m

em
or

y

9

Apparently Only a Reliability Issue
• To increase density (i.e., reduce cost) memory cells have become

incredibly small ( small storage capacitance, smaller noise
margin) and word lines got extremely close to each other (
larger crosstalk capacitive coupling)

• Frequent activation of word lines neighbouring particular cells
between refreshes may flip the cell states due to various forms of
capacitive coupling

• Disturbance errors have been a known design issue of DRAMs
since ever, but failure in commercial DDR3 chips was
demonstrated in 2014

word line
N-1

word line
N+1

Rowhammer ©
 W

ik
ip

ed
ia

, D
yn

am
ic

 ra
nd

om
-a

cc
es

s m
em

or
y

1
0

A Remarkably Simple Code
X maps

here

Y maps
here

Rowhammer

code1a:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
mfence
jmp code1a

• “mov” instructions activate neighbouring rows
• “clflush” unprivileged x86 instructions flush the cash from the

values of X and Y (so that future accesses are misses) and “mfence”
roughly waits for the flush

• Repeat as quickly as possible

©
 W

ik
ip

ed
ia

, D
yn

am
ic

 ra
nd

om
-a

cc
es

s m
em

or
y

1
1

An Opportunity for Attacks

• Rowhammer effectively violates memory protection (“if I can read, I can also write”)
which is a key ingredient to privilege separation across processes

• By accessing locations in neighbouring rows one could gain unrestricted memory
access and privilege escalation
– Allocate large chunks of memory, try many addresses, learn weak cells
– Release memory to the OS
– Repeatedly map a file with RW permissions to fill memory with page table entries (PTEs)
– Use Rowhammer to flip (semirandomly) a bit in one of these PTEs; it will now point to the wrong

physical page
– Chances are that this physical page contains PTEs too, so now accessing that particular mapping of

the file (RW) actually modifies the PTEs, not the file
– Attacker can arbitrarily change PTEs and memory protection is gone

• Not that simple in practice, tons of difficulties, but people managed to make it work!

1
2

An Aside on DRAMs: Data Remanence

• A completely different problem with storing data on capacitors: cells may
leak information quickly in the worst case but very many do not leak
much in typical conditions

• Lowering significantly the device temperature (e.g., use spray refrigerants)
makes most cells retain charge for long time (seconds to minutes)

• Coldboot attacks:
– Cool a working DRAM device
– Switch off
– Move the device to another computer or reboot a malicious OS
– Read content (passwords, secret keys, etc.)

1
3

3
Covert Channels and Side-Channel Attacks

1
4

Covert Channels

• “A covert channel is an intentional communication between a
sender and a receiver via a medium not designed to be a
communication channel” (Szefer, 2019)

• If we isolate a critical process inside a virtual machine, a covert
channel may allow a rogue programme inside of the isolated
process (a Trojan horse) to leak a secret to some malicious
receiver without anyone to notice (no conventional
communication channel visible)

1
5

Side Channels Attacks

• Attacks where the sender is the unsuspecting victim of the
attack, who is unknowingly transmitting information through a
covert channel, and the receiver is the attacker

• Sending (or leaking) information is a side effect of the normal
operation of the victim, either because of the hardware
implementation of the system or because of the software
implementation of the victim—or both

1
6

Covert- and Side-Channels

Sender / Victim
Process

Receiver / Attacker
Process

System State
(timing, cache, branch predictors, pipelines,…)

Microarchitectural

Physical Emanation
(power consumption, temperature, electromagnetic waves,…)

Measuring
Instrument

Physical

1
7

Covert- and Side-Channels

• Microarchitectural
– Based on the existence of microarchitectural state, that is state not

(normally) visible to the programmer—because architectural state is
known and thus, apart from bugs, inherently protected!

– Based on the sharing of hardware components featuring such
microarchitectural state

– Physical replication and isolation may solve the problem

• Physical
– Based on the physical nature of the computing system
– Potentially more difficult to fight, but also harder to exploit

1
8

4
Attacks on Timing to Break Isolation and Confidentiality

(Timing Side-Channel Attacks)

1
9

Execution Time Reveals Something on Data

Compare

with

bool insecureStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
for (size_t i = 0; i < length; i++)

if (ca[i] != cb[i])
return false;

return true;
}

bool constantTimeStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size_t i = 0; i < length; i++)

result &= ca[i] == cb[i];
return result;

}

Return as soon as a difference is found

Record the difference and return
always after checking the entire string

2
0

Blinding through Constant Time

• Not always easy:
– May need to fight compiler optimizations

• Time is typically made constant by provably unnecessary computation

– Variability may arise from microarchitectural phenomena
• Data-dependent instruction latency
• Virtual memory and caches
• Instruction scheduling
• …

• In a sense, most if not all of the attacks discussed in the
following slides are ultimately timing attacks of specific nature

2
1

5
Attacks on Memory to Break Isolation and Confidentiality

(Cache Side-Channel Attacks)

2
2

Cache Side-Channel Attacks

• Oldest and perhaps most powerful example of microarchitectural side-
channel (cache shared but not architecturally visible)
– Evoked since 1992 but first fully demonstrated in 2005

• Attacker can differentiate hits and misses using some high-resolution
timing measurement (e.g., processor cycles)

• Victim memory accesses (= where the victim loads or stores) reveal
secrets
– E.g., D$ accesses to an AES sbox() depend on the secret key
– E.g., I$ accesses to different RSA functions depend on the secret key

• Attacker can run victim code
– E.g., write to a file into an encrypted volume, send packets through a VPN interface

2
3

Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and

time each set
• fast because data are in cache

4-way set-associative

8 sets

2
4

Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and

time each set
• fast because data are in cache

3. Run the victim

4-way set-associative

8 sets

2
5

Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and

time each set
• fast because data are in cache

3. Run the victim
4. Read all pieces of data for all sets and

time each set (probe)
• if step 4 takes longer than 2 for set Y, the

victim accessed something in set Y

4-way set-associative

8 sets

2
6

Prime+Probe

• Key advantage over other techniques: the attacker times their own code
and not the victim’s code  good control of measurement noise

Sets accessed

Byte of the
plaintext

So
ur

ce
: O

sv
ik

et
 a

l.,
 C

T-
RS

A’
06

2
7

Candidate Scores

• Many attacks to cryptographic algorithms involve trying multiple
plaintexts and/or key hypotheses and distinguishing between most likely
and least likely over many attempts

0x50…0x5f = 80…96 0x5…

Key hypothesis

Score

So
ur

ce
: O

sv
ik

et
 a

l.,
 C

T-
RS

A’
06

2
8

Asynchronous Attacker and Victim?

• The example is here a Flush+Reload
attack, similar to Prime+Probe but uses
the clflush instruction of x86 to evict a
specific cache line and depends on
virtual machine page deduplication (if
two users load the same executable or
libraries, only one is kept in memory)
– Attacker and victim use different virtual

addresses in different virtual machines,
but the physical address is the same

• Tracks accesses to code to infer the
internal state of the victim

The attacker runs in a virtual
machine and the victim in another
one, so no synchronization possible

So
ur

ce
: Y

ar
om

an
d

Fa
lk

ne
r,

U
SE

N
IX

 S
ec

ur
ity

 ’1
4

2
9

Asynchronous Attacker and Victim?

The execution sequence Square-Reduce-Multiply-Reduce
reveals the secret (the victim was processing a set bit)

So
ur

ce
: Y

ar
om

an
d

Fa
lk

ne
r,

U
SE

N
IX

 S
ec

ur
ity

 ’1
4

3
0

6
Combined Attacks to Break Isolation and Confidentiality

(Meltdown)

3
1

Meltdown

• Catastrophic attack making it possible to read all memory of a process
(including protected kernel data)

• By product of the way some microarchitectural features are implemented
(e.g., AMD x86 implementations are per chance resistant to Meltdown)

• Exploits race condition between memory access and protection checks
– Ultimately exploits the microarchitectural nature of caches (something is left in the

cache upon exception because the cache is not part of the architectural state)

The attacker executes a forbidden access and speculatively
uses the result to obtain nonarchitectural side-effects that
reveal the secrets before the forbidden access is squashed

3
2

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

Attacker: *wherever;

We try to read anything
we want, provided that it
is mapped in our virtual

addressing space (but the
value will be removed
from the ROB and an

exception thrown)

3
3

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
secretAttacker:

Before the exception is
thrown something else will

be executed

3
4

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
array[secret * 4096];Attacker:

If we use the abusively loaded value
(secret) for a legitimate memory access,

trace of it will remain in the cache

3
5

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
array[secret * 4096];

Make sure that a secret the
attacker cannot read leaves
a trace before it is cancelled

Perform a
Prime+Probe
cache attack
to learn the

secret

Attacker:

Renamed register which
will never be committed

3
6

0
0
0
0
1

0

Register Address ValueTag

0x627f ba5a

FP3 ???

$r4

0x12340x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 0x123 40000x1000 0010

0 MEM3 ???0x1000 0018

head

0 0xf123 40000x1000 0014 $r3

$r3

$r3

$f3

$r9

The ROB View

0x1000000c: lw $r3, 0($r5)
0x10000010: sll $r3, $r3, 12
0x10000014: add $r3, $r3, $r6
0x10000018: lw $r4, 0($r3)

wherever
secret

array[]

The protection violation has
been discovered and is set to

raise soon an exception…

…yet the secret value is in the
ROB and has been used already

to affect the cache state

3
7

Does It Affect All Processors?

Processors Affected?
Intel x86 Most processors since 1995
AMD x86 None

ARM Cortex-A75
Apple ARM Most processors
IBM POWER POWER8 and POWER9

VIA x86 Most processors

3
8

7
Combined Attacks to Break Isolation and Confidentiality

(Spectre)

3
9

Spectre

• Another catastrophic attack making it possible to read all memory
• Addresses another shared resource: branch predictors

– For simplicity, branch predictors are not thread specific (see also Simultaneous
Multithreading lecture)

• Exploits side effects of (mispredicted) speculative execution
– Mispeculation does not affect the architectural state (of course!)…
– …but it may affect microarchitectural structures (e.g., caches)

Get the victim to speculatively execute leaky code
whose nonarchitectural side-effects reveal the secrets

4
0

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

array1[x]Victim:

With an appropriate value
for x we can read
anything we want

4
1

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

array1[x]
if (x < array1_size)

array1[x]Victim:

If we can get the processor
to mispredict the condition,

the access will be speculatively performed
(but the value will be removed from the ROB)

4
2

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

if (x < array1_size)
y = array2[array1[x] * 4096];array1[x]

if (x < array1_size)
array1[x]Victim:

If we use the speculatively loaded value
(array1[x]) for a memory access, trace of

it will remain in the cache

4
3

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

if (x < array1_size)
y = array2[array1[x] * 4096];array1[x]

if (x < array1_size)
array1[x]Victim:

Force the
victim to

mispeculate
Perform a

Prime+Probe
cache attack
to learn the

secret

4
4

Conclusions

• Large catalogue of powerful primitive attacks exploiting microarchitectural state
• Real attacks are a composition of primitives (A  B  C…)

• Fairly difficult to fight them comprehensively, without hardware support, and without
a serious loss of performance

Matryoshka
Dolls

	CS-200�Computer Architecture�—�Part 6. Hardware Security
	Why Hardware Security?
	Outline of This Lecture
	1
	Threat Model
	Classic Security Properties
	2
	Dynamic Random-Access Memory
	Apparently Only a Reliability Issue
	A Remarkably Simple Code
	An Opportunity for Attacks
	An Aside on DRAMs: Data Remanence
	3
	Covert Channels
	Side Channels Attacks
	Covert- and Side-Channels
	Covert- and Side-Channels
	4
	Execution Time Reveals Something on Data
	Blinding through Constant Time
	5
	Cache Side-Channel Attacks
	Prime+Probe
	Prime+Probe
	Prime+Probe
	Prime+Probe
	Candidate Scores
	Asynchronous Attacker and Victim?
	Asynchronous Attacker and Victim?
	6
	Meltdown
	Meltdown
	Meltdown
	Meltdown
	Meltdown
	The ROB View
	Does It Affect All Processors?
	7
	Spectre
	Spectre
	Spectre
	Spectre
	Spectre
	Conclusions

