CS-200
Computer Architecture

Part 6. Hardware Security

Paolo lenne

<paolo.ienne@epfl.ch>

Why Hardware Security?

e Software complexity
— OSes and hypervisors are too complex to be trusted to be bug free
— Who can trust OSes and hypervisors?! Secure processor architectures

(« Microarchitectural side-channel attacks N
— Sharing with other users gives them the ability to discover our secrets
9 » Shared caches, shared processors (branch predictors, pipelines, etc.) € CS-ZOO!)

* Physical monitoring attacks and physical side-channel attacks

— Users cannot physically protect their computing hardware
* Hardware is often in the cloud
 Hardware is embedded and remote (Internet-of-Things, 10T)

> w N

Outline of This Lecture

Basic Definitions
Attacks on Memory to Compromise Integrity (Rowhammer)
Covert Channels and Side-Channel Attacks

Attacks on Timing to Break Isolation and Confidentiality (Timing Side-
Channel Attacks)

Attacks on Memory to Break Isolation and Confidentiality (Cache Side-
Channel Attacks)

Combined Attacks to Break Isolation and Confidentiality (Meltdown)
Combined Attacks to Break Isolation and Confidentiality (Spectre)

Basic Definitions

Threat Model

Specification of the threats that a system is protected against

Trusted Computing Base: what is the set of trusted hardware
and software components

Security properties: what the trusted computing base is
supposed to guarantee

Attacker assumptions: what a potential attacker is assumed
capable of

Potential vulnerabilities: what an attacker might be able to gain

Classic Security Properties

* Confidentiality

—> prevent the disclosure of secret information
* Integrity:

- prevent the modification of protected information
* Availability

— guarantee the availability of services and systems

We will also speak of isolation, that is the possibility to prevent any interaction between
users and processes, often used to guarantee confidentiality and integrity

Attacks on Memory to Compromise Integrity
(Rowhammer)

Dynamic Random-Access Memory

DRAMs are the densest (and thus cheapest) form of
random-access semiconductor memory

DRAMs store information as charge in small capacitors
part of the memory cell

First patented in 1968 by Robert Dennard, scaled
amazingly over decades and was somehow an
important ingredient of the progress of computing
systems

Charge leaks off the capacitor due to parasitic
resistances = every DRAM cell needs a periodic
refresh (e.g., every ¥60 ms) lest it forgets information

D.O. (DATA OUT)
TRI STATE
BUS

g1t 1 1 1
T L[L[L[L
2l T| T| T| T
~eo—B T 1 [T 11
% 0—'_1 |>—'_|1 L
z L L \l) L
T T I 1
2 LT Lr LT 1
s | L| I| £ I
15l o S e e o e
N A At
I T| T| T
RAS—ofyt ofyt ofyt ofvt|tpan,
‘ R? ’U 2? R? | ;?:ON:EAR&TOHJ
/| LATCH !
CoL *_ *_ ?_ r—
| AooR Z] DATA SELECTOR (4 TO 1 MUX)]

© Wikipedia, Dynamic random-access memory

Apparently Only a Reliability Issue

* Toincrease density (i.e., reduce cost) memory cells have become —r—T ""°|:|°'1"“e
. . . . e -
incredibly small (= small storage capacitance, smaller noise - E% m% E% E%
° . L L L L >
margin) and word lines got extremely close to each other (= —=—ao—»§ e g
larger crosstalk capacitive coupling) gl T e IR el 2
.. . . : . = L a L L . @
* Frequent activation of word lines neighbouring particular cells A N T word line §
: - N+1 ©
between refreshes may flip the cell states due to various forms of Sl L L L :
capacitive coupling g | | I f] 1 3
. . .] L 1 1 1L ©
* Disturbance errors have been a known design issue of DRAMs N Tt ot =
since ever, but failure in commercial DDR3 chips was I & I I z
demonstrated in 2014 STl oyt ofyt olilliprry
[I I I |V
=
=
©
/~ LATCH |
Rowhammer S e
{758] DATA SELECTOR (4 TO 1 MUX)|

D.O. (DATA OUT)
TRI STATE
BUS

A Remarkably Simple Code

— X maps
sl L 1 L L here
Rowhammer o [[F[[T .
—a0B [T [T |1 |1 £
% 1»—'_‘1 l»—'_‘%»—'_ll o—'_\tL E
codela: 2| 2 A1 2] fvmaps 8
mov (X), %eax // read from address X 5 }1 }1}1 “é'l here g
mov (Y), %ebx // read from address Y g T| TIT| T| T §
clflush (X) // Tlush cache for address X L R e e e o N S
clflush (Y) // flush cache for address Y 2 R e el ol i el e
I| IT| I| T &
mfence L L L L s
jmp codela wo bl ot of ol G
VI V[V[V[EEe. 8
* “mov” instructions activate neighbouring rows 'g
 “clflush” unprivileged x86 instructions flush the cash from the - . |
values of X and Y (so that future accesses are misses) and “mfence” —] &, H DATA SELECTOF‘DST[E’;T:‘%’SL)
roughly waits for the flush %

* Repeat as quickly as possible

An Opportunity for Attacks

Rowhammer effectively violates memory protection (“if | can read, | can also write”)

which is a key ingredient to privilege separation across processes

By accessing locations in neighbouring rows one could gain unrestricted memory

access and privilege escalation

Allocate large chunks of memory, try many addresses, learn weak cells

Release memory to the OS

Repeatedly map a file with RW permissions to fill memory with page table entries (PTEs)

Use Rowhammer to flip (semirandomly) a bit in one of these PTEs; it will now point to the wrong
physical page

Chances are that this physical page contains PTEs too, so now accessing that particular mapping of
the file (RW) actually modifies the PTEs, not the file

Attacker can arbitrarily change PTEs and memory protection is gone

* Not that simple in practice, tons of difficulties, but people managed to make it work!

An Aside on DRAMs: Data Remanence

* A completely different problem with storing data on capacitors: cells may

leak information quickly in the worst case but very many do not leak
much in typical conditions

* Lowering significantly the device temperature (e.g., use spray refrigerants)
makes most cells retain charge for long time (seconds to minutes)

 Coldboot attacks:

— Cool a working DRAM device
— Switch off

— Move the device to another computer or reboot a malicious OS
— Read content (passwords, secret keys, etc.)

Covert Channels and Side-Channel Attacks

Covert Channels

* “A covert channel is an intentional communication between a
sender and a receiver via a medium not designed to be a
communication channel” (Szefer, 2019)

* |f we isolate a critical process inside a virtual machine, a covert
channel may allow a rogue programme inside of the isolated
process (a Trojan horse) to leak a secret to some malicious
receiver without anyone to notice (no conventional
communication channel visible)

Side Channels Attacks

* Attacks where the sender is the unsuspecting victim of the

attack, who is unknowingly transmitting information through a
covert channel, and the receiver is the attacker

* Sending (or leaking) information is a side effect of the normal
operation of the victim, either because of the hardware
implementation of the system or because of the software
implementation of the victim—or both

Covert- and Side-Channels

Physical Emanation
(power consumption, temperature, electromagnetic waves,...)

Physical
W TS \
\
\
F» \» B
Sender / Victim Receiver / Attacker
Process Process

Measuring
Microarchitectural System State nstrument

(timing, cache, branch predictors, pipelines,...)

Covert- and Side-Channels

e Microarchitectural

— Based on the existence of microarchitectural state, that is state not
(normally) visible to the programmer—because architectural state is
known and thus, apart from bugs, inherently protected!

— Based on the sharing of hardware components featuring such
microarchitectural state

— Physical replication and isolation may solve the problem
* Physical
— Based on the physical nature of the computing system
— Potentially more difficult to fight, but also harder to exploit

Attacks on Timing to Break Isolation and Confidentiality
(Timing Side-Channel Attacks)

Execution Time Reveals Something on Data

Compare
bool insecureStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
for (size_t i = 0; 1 < length; i++)

1t (ca[i] !'= cb[i1])
return false; <
return true; j;;>
} — Return as soon as a difference is found
with

bool constantTimeStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size_t 1 = 0; 1 < length; 1++)
[result &= ca[i] == cb[i]?j
w Record the difference and return

return result;
} always after checking the entire string

Blinding through Constant Time

* Not always easy:
— May need to fight compiler optimizations

* Time is typically made constant by provably unnecessary computation

— Variability may arise from microarchitectural phenomena
» Data-dependent instruction latency
* Virtual memory and caches
* |Instruction scheduling

* In a sense, most if not all of the attacks discussed in the
following slides are ultimately timing attacks of specific nature

Attacks on Memory to Break Isolation and Confidentiality
(Cache Side-Channel Attacks)

Cache Side-Channel Attacks

Oldest and perhaps most powerful example of microarchitectural side-
channel (cache shared but not architecturally visible)

— Evoked since 1992 but first fully demonstrated in 2005

Attacker can differentiate hits and misses using some high-resolution
timing measurement (e.g., processor cycles)

Victim memory accesses (= where the victim loads or stores) reveal
secrets

— E.g., DS accesses to an AES sbox() depend on the secret key

— E.g., IS accesses to different RSA functions depend on the secret key
Attacker can run victim code

— E.g., write to a file into an encrypted volume, send packets through a VPN interface

Prime+Probe

[What location (set) does the victim access?]

4-way set-associative

A
1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and
time each set
» fast because data are in cache
8 sets

Prime+Probe

[What location (set) does the victim access?]

4-way set-associative

A
1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and
time each set
» fast because data are in cache
8 sets 3. Run the victim

8 sets

A

v

Prime+Probe

[What location (set) does the victim access?]

4-way set-associative

P [
< »

w

Fill all sets with attacker content (prime)
Read all pieces of data for all sets and

time each set

» fast because data are in cache

Run the victim

Read all pieces of data for all sets and

time each set (probe)

» if step 4 takes longer than 2 for set Y, the
victim accessed something in set Y

Prime+Probe

* Key advantage over other techniques: the attacker times their own code
and not the victim’s code = good control of measurement noise

Sets accessed

|
I
|
I (L]
1]} o
-
il \”I \IHF‘ | I‘ | ‘I\

Byte of the
plaintext

-
1

A
[

3l
<

Fig. 5. Prime+Probe attack using 30,000 encryption calls on a 2GHz Athlon 64, attacking Linux
2.6.11 dm-crypt. The horizontal axis is the evicted cache set (i.e., (y) plus an offset due to the
table’s location) and the vertical axis is pg. Left: raw timings (lighter is slower). Right: after
subtraction of the average timing of the cache set. The bright diagonal reveals the high nibble of
po = 0x00.

Source: Osvik et al., CT-RSA’06

Candidate Scores

Many attacks to cryptographic algorithms involve trying multiple
plaintexts and/or key hypotheses and distinguishing between most likely
and least likely over many attempts

A 25] 1] w4 |++] \2] 1]]] 1 35 A
2 4 g L 3 -
1.5 H L 2.5
S ;] : L
+ + 1.5 4
core 0.5 -, + +y 4 -
S S e ST S ++ + + Ft T + o+t 4+ 1 4
0 4 B e e T + Wt ot ot o T - +
i B+ H +F ++++_hi— "th— +-h_"_-'*+-ﬂ'-ﬂ__|'_ﬂ'-ﬂ-+ -h_+_ﬂ—-l1- 'H-q_"' ++ ++|-H*' ﬂ'}—-ﬁ"—ﬂ' ++ i +-H—++-#:H'-hh_++ 0.5 A * + 4 +
-0.5 o+ =+, F R + * + 7 7 o+ T TR T Ty + L
g A T + + v od + .
q 4 * + + + B 05 ’ ++
+ Vo T + + +
v s T T T T T T T T T T T T T T T A +—T—T—TTT +

o

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

0 2 4 6 8 1012 14 16

Key hypothesis

Fig. 2. Candidate scores for a synchronous attack using Prime+4Probe measurements, analyzing a
dm-crypt encrypted filesystem on Linux 2.6.11 running on an Athlon 64, after analysis of 30,000
(left) or 800 (right) triggered encryptions. The horizontal axis is ks = ps @y (left) or (ks) (right)
and the vertical axis is the average measurement score over the samples fulfilling y = p5 & ks (in
units of clock cycles). The high nibble of k5 = 0x50 is easily gleaned.

Source: Osvik et al., CT-RSA’06

Asynchronous Attacker and Victim?

(

&

one, so no synchronization possible

\
The attacker runs in a virtual

machine and the victim in another

J

The example is here a Flush+Reload
attack, similar to Prime+Probe but uses
the clflush instruction of x86 to evict a
specific cache line and depends on
virtual machine page deduplication (if
two users load the same executable or
libraries, only one is kept in memory)

— Attacker and victim use different virtual

addresses in different virtual machines,
but the physical address is the same

Tracks accesses to code to infer the
internal state of the victim

(A)

(B)

©)

(D)

(E)

Victim

Avacker SRR e 4
Victim ~ §

Atacker SR Y
Victim \ [

Atacker SN [4
Victim | |

Atacker SN N
Victim L]] |

Avacker S Nl 4 ¢

Attacker Victim
B Flush [wait [l Reload [Access [] Something else

Source: Yarom and Falkner, USENIX Security ‘14

Probe Time (cycles)

Asynchronous Attacker and Victim?

500 T T T T T T T T

Sq:Jare .
Multiply — ©
Modulo .
. Missed slots
400 | -
(@] []
905608'009'9.0508@®o°o-.QQ.?O-.OéoOeQQOeg. 80e,°09,. 'GQGOOQQOOO.et..-595052.0058@© 80590'8--.00'©
300 | -
o
O
200 | -
o Threshold e
100 |) -
(X .:’, 'go/ e0 o %o “*.o L O¢ P .86) o' 084 0@ .‘3 .o' ® o! eQ o4
0 L 1 1 1 1 1]] 1
3900 391 0 3920 3930 3940 3950 3960 3970 3980 3990 4000

— Time Slot Number

/ N \/\r/

Sq uare

' Sﬁeculatlvé Execution

The execution sequence Square-Reduce-Multiply-Reduce
reveals the secret (the victim was processing a set bit)

Reduce Multlply Reduce

Source: Yarom and Falkner, USENIX Security ‘14

Combined Attacks to Break Isolation and Confidentiality
(Meltdown)

Meltdown

e (Catastrophic attack making it possible to read all memory of a process
(including protected kernel data)

e By product of the way some microarchitectural features are implemented
(e.g., AMD x86 implementations are per chance resistant to Meltdown)
* Exploits race condition between memory access and protection checks

— Ultimately exploits the microarchitectural nature of caches (something is left in the
cache upon exception because the cache is not part of the architectural state)

4)
The attacker executes a forbidden access and speculatively

uses the result to obtain nonarchitectural side-effects that

L reveal the secrets before the forbidden access is squashed y

Meltdown

execute a @ forbidden access

We try to read anything
we want, provided that it
is mapped in our virtual
addressing space (but the
value will be removed
from the ROB and an
exception thrown)

Attacker:

Meltdown

execute a @ forbidden access
and @ speculatively use the result

before the forbidden access is squashed
Before the exception is
thrown something else will
be executed

Attacker: s bever:

~

Meltdown

execute a @ forbidden access
and @ speculatively use the result
with (3) nonarchitectural side-effects

before the forbidden access is squashed

4)

Attacker: array[secret * 4096];

If we use the abusively loaded value /k)

(secret) for a legitimate memory access,
trace of it will remain in the cache

Meltdown

Make sure that a secret the execute a @ forbidden access
attacker cannot read leaves { and (2) speculatively use the result Perform a
o . . . ime+
atrace before it is cancelled | \yjth (3) nonarchitectural side-effects Prime+Probe
cache attack
that reveal the secrets

.) to learn the
before the forbidden access is squashed secret
4) | |
- ——~—J—_ Renamed register which

secret = *wherever; will never be committed

Attacker: array[secret * 4096];

The ROB View

wherever
secret

0x1000000c: 1w $r3, 0($r5)
0x10000010: s11 $r3, $r3, 12
0x10000014: add $r3, $r3, $r6
0x10000018: 1w $r4, 0($r3)

array[]

//”“€>

The protection violation has
been discovered and is set to
raise soon an exception...

...yet the secret value is in the
ROB and has been used already

to affect the cache state \

tail

Excpt. PC Tag Register Address Value

0

0

0 | 0x1000 0004 Sr9 0x627f ba5a
0x1000 0008 | FP3 $f3 27?7

1 |)0x1000 000c Sr3 0x1234
0x1000 0010 Sr3 0x123 4000
0x1000 0014 Sr3 0xf123 4000

O | 0x1000 0018 | MEM3 | Sr4 ??7?

0)

head

Does It Affect All Processors?

Intel x86 Most processors since 1995
AMD x86 None
ARM Cortex-A75
Apple ARM Most processors
IBM POWER POWERS8 and POWER9

VIA x86 Most processors

Combined Attacks to Break Isolation and Confidentiality
(Spectre)

Spectre

* Another catastrophic attack making it possible to read all memory
* Addresses another shared resource: branch predictors

— For simplicity, branch predictors are not thread specific (see also Simultaneous
Multithreading lecture)

* Exploits side effects of (mispredicted) speculative execution
— Mispeculation does not affect the architectural state (of course!)...
— ...but it may affect microarchitectural structures (e.g., caches)

4)

Get the victim to speculatively execute leaky code
whose nonarchitectural side-effects reveal the secrets

Spectre

With an appropriate value

@ |ea ky Code for x we can read

anything we want

Victim:

Spectre

If we can get the processor
to mispredict the condition,

the access will be speculatively performed @ SpECUIaUVEIV execute
(but the value will be removed from the ROB) @ lea ky code

« as . 1f@arrayl_size))
Victim: 24 10x]

Spectre

@ speculatively execute
@ leaky code
with (3) nonarchitectural side-effects

e if (x < —sTZe)
Victim: y =Garray2[arrayl[x] * 40961}

_

If we use the speculatively loaded value /]/

(arrayl1[x]) for a memory access, trace of
it will remain in the cache

Force the
victim to
mispeculate

Victim:

{

Spectre

@ speculatively execute
Ieaky Code Perform a

with 3) nonarchitectural side-effects } Prime+Probe

) th cache attack
that reveal the secrets to learn the

secret

~

if (x < arrayl_size)
y = array2[arrayl[x] * 4096];

Conclusions

* Large catalogue of powerful primitive attacks exploiting microarchitectural state
* Real attacks are a composition of primitives (A > B =2 C...)

Matryoshka

* Fairly difficult to fight them comprehensively, without hardware support, and without
a serious loss of performance

	CS-200�Computer Architecture�—�Part 6. Hardware Security
	Why Hardware Security?
	Outline of This Lecture
	1
	Threat Model
	Classic Security Properties
	2
	Dynamic Random-Access Memory
	Apparently Only a Reliability Issue
	A Remarkably Simple Code
	An Opportunity for Attacks
	An Aside on DRAMs: Data Remanence
	3
	Covert Channels
	Side Channels Attacks
	Covert- and Side-Channels
	Covert- and Side-Channels
	4
	Execution Time Reveals Something on Data
	Blinding through Constant Time
	5
	Cache Side-Channel Attacks
	Prime+Probe
	Prime+Probe
	Prime+Probe
	Prime+Probe
	Candidate Scores
	Asynchronous Attacker and Victim?
	Asynchronous Attacker and Victim?
	6
	Meltdown
	Meltdown
	Meltdown
	Meltdown
	Meltdown
	The ROB View
	Does It Affect All Processors?
	7
	Spectre
	Spectre
	Spectre
	Spectre
	Spectre
	Conclusions

